
N90-27305

Capturing Design Knowledge

Brian A. Babin and Rasiah Loganantharaj

Center for Advanced Computer Studies

University of Southwestern Louisiana

P.O. Box 44330, Lafayette, Louisiana 70504

Abstract

This paper proposes a scheme to capture the design knowledge of a com-

plex object including functional, structural, performance, and other constraints.

Further, the proposed scheme is also capable of capturing the rationale behind

the design of an object as a part of the overall design of the object. With this

information, the design of an object can be treated as a case and stored with

other designs in a case base. A person can then perform case-based reasoning

by examining these designs. Methods of modifying object designs are also dis-

cussed. Finally, an overview of an approach to fault diagnosis using case-based

reasoning is given.

1 Introduction

At the abstract level a design task involves finding a consistent assignment for a

set of variables that together define the object desired and satisfy the functional,

structural, performance, and other constraints placed upon the object. In other words,

a design task involves solving a constraint satisfaction problem where the constraints

define the functional, structural, performance, and other requirements of the object[6].

Unfortunately the constraints defining a new object are often incomplete, ill-defined,

or inconsistent. In such situations the design process involves the iteration of the

following steps: refinement of the object specification followed by partial constraint

satisfaction[2][3]. This process is repeated until a complete specification of the object

is achieved.

The design process can be systematic, as we briefly discussed, or ad hoc. Unfortu-

nately many of the designs to date were developed in an ad hoe manner. The method

of systematic design is not very well understood. As a result, there have been a num-

ber of recent efforts towards a better understanding of the design process[3][6][10][ll].

In this paper we are interested in capturing the design knowledge of an object.

The purposes are twofold: (1) capturing the design knowledge makes it much easier

281



to understand,modify, or enhancethe design,and (2) studying the designsof objects
and the knowledgewhichneedsto be representedwill help in systematizingthe design
process.

In order to understand the designknowledgeand representation issuesinvolved,
wehave chosento study the processof designingcomplexobjects. Loosely stated, a

complex object is anything with a nontrivial design consisting of a number of parts

and their interconnections. Examples of complex objects include toasters and table

lamps at the relatively simple end and jet engines at the complex end. Hereafter a

complex object is simply referred to as an object.

When representing an object we need to capture the decompositional, hierarchi-

cal, functional, structural, and physical knowledge for that object[l]. We also need

to capture the design knowledge including the decisions made while designing the ob-

ject, the rationales behind these decisions, and any alternatives that were considered.

Given the design of an object, it may be relatively easy to capture the decompo-

sitional, hierarchical, functional, structural, and physical knowledge of that object.

However, the acquisition of design decisions, alternatives, and rationales is likely to

be quite challenging, especially for an ad hoc design.

All of this information about an object can be gathered together to form a partic-

ular design experience. A designer may study this design experience while designing

another object which is similar in some respect. The desire to examine past design

experiences makes case-based reasoning (CBR) a natural way to access these expe-

riences. CBR can be applied here by treating a design experience as a case and

building a case base of various design experiences. Background information on CBR

or, more generally, memory-based reasoning can be found in [5], [7], and [9]. Designs

can be indexed according to parts used, functionality, and other features. This allows

a designer to examine the design experiences of other objects with similar parts or

functionality to help in making design decisions. We also briefly address the issue of

diagnosing faults which cause an object to malfunction. We employ CBR to find the

cause of a malfunction by examining the causes of previous similar malfunctions.

The rest of the paper is arranged as follows. First, the physical representation of

an object is described since it is the object itself upon which everything else is based.

Next, the method of designing an object from constraints is discussed. The design

process produces not only the physical representation of an object, but also why it

was designed the way it was and how it satisfies its constraints. Then various types

of design modifications which may be required or desired are examined. Finally, a

brief look is given at fault diagnosis for complex objects.

2 Object Representation

Central to the idea of representing the design of a complex object is the representation

of the object. Indeed every other aspect of the design is at least indirectly dependent

282



on the representationof the object. For example, the proof that an object hascertain
desirable properties will likely contain a referenceto the properties of a physical
component in the design.

There are twoalternatives for representinganobject: (1) haveseparateconceptual

and physical decompositions of an object with a mapping between them, or (2) com-

bine the conceptual and physical decompositions into a unified representation. When

the conceptual decomposition of an object matches with its physical decomposition,

the cognitive complexity of the system is reduced and hence the representation of the

object becomes easier to understand. Therefore we favor matching the conceptual

and physical decompositions of an object. To capture the relevant design knowledge,

we should be able to represent the decompositional, hierarchical, functional, struc-

tural, and physical knowledge for the object[l]. We use a frame-based scheme to

capture the above design knowledge since it is capable of representing the required

information and provides an easy means for manipulating this information.

Decompositional knowledge of an object is represented in a hierarchy. An object

is composed of parts, each of whicb can be composed of subparts, and so on. A

collection of subparts may be thought of as a component of the object. Relationships

between parts in the hierarchy are represented by using tIAS-PART and PART-OF

links. An object is ultimately realized by a collection of parts which are elementary

or are themselves complex objects with their own designs. A part is considered

elementary if it is essentially nondecomposable. Examples of elementary objects are

nails, screws, sheet metal, and glass. Physical knowledge is represented by describing

elementary objects in terms of size, shape, color, composition, mass, etc. This scheme

allows different objects to use the same part in their designs without having to each

give the physical representation of that part. It also allows the physical design of an

object to be examined in as much detail as is desired.

To take a simplified example, a lamp can be decomposed into the following parts:

base, cord, switch, shade holder, and shade. The switch is an example of a complex

object which has its own design. The base can be partially described as being white,

ceramic, cylindrical, and 12 inches tall.

The structural knowledge of an object is represented by explicitly specifying the

interconnections between the parts. This provides among other things a method

of specifying the orientation of one part with respect to another and the type of

connection (i.e. glue, weld, interlocking parts) between parts. The interconnections

between parts are represented by links. The specification of an interconnection link

is necessarily complex because of the nature of the relationship being represented.

Not only must the type of connection between parts be specified, but the spatial

orientation between connected parts must be specified as well. To use the lamp

example, it can be specified that the bottom of the switch screws into the top of the

base. Thus the physical design of an object is represented by a hierarchy of parts and
their interconnections.

Functional knowledge is represented by describing an object in terms of what it

283



does. As mentioned earlier, every object serves some purpose. For example, the

purpose of a toaster is to toast things. The exact representation required to represent

functional knowledge has not yet been decided upon.

The taxonomy of objects is represented by classes and subclasses using IS-A and

SUBCLASS links, respectively. A particular object is an instance of some class of

objects. Thus objects which are similar can be located and compared. The collection

of the object designs forms the case base. An indexing scheme is needed to be able

to locate and examine objects with specific characteristics. This may be useful when

designing an object since choices of already existing objects can be examined by

the designer when deciding what to use for a particular part. Also, the PART-OF

links allow the designer to analyze how a part was used in other designs. Using this

information, the designer can decide whether an existing object will suffice or a new

object must be designed. As is described later, a new object may be created by

modifying the design of an existing object.

3 Designing from Constraints

The design of an object provides a consistent assignment for a set of variables that

together define the desired object and satisfy the constraints placed upon that ob-

ject. General classes of constraints include functionality, cost, performance, size, and

weight. An example of a cost constraint is "The lamp must cost no more than 30 dol-

lars at current prices." Obviously there are many other classes into which constraints

may fall.

The constraints for an object are specified first and then a design for the object

is developed to meet these constraints. There exists a gap between the constraints

and the design since there is often no reference to how each constraint is satisfied in

the design. Some sort of bridge is needed to link the design of an object with the set

of constraints which it must satisfy. This is especially important when a new object

with slightly different constraints from an existing object is desired. By identifying

the parts of the existing design dependent on the altered constraints, the new design

can be obtained by modifying the existing design to meet the new constraints.

As the complexity of an object grows, so do the number of constraints. A struc-

tured form of specifying constraints is needed to manage complex descriptions. The

method presented here uses top-down constraint refinement and bottom-up constraint

satisfaction, similar to the plausibility-driven design method described in [3]. Indeed,

the latter method will be used as a basis in formally developing the former method.

Initially, very general constraints are given for an object. These constraints, re-

ferred to as top-level constraints, generally include properties of the object as a whole.

Each top-level constraint is then refined into more specific constraints. It must be

shown that satisfying all of these more specific constraints will cause the top-level

constraints to be satisfied. Thus if constraint A is refined into constraints X, Y, and

284



Z, it must be shown that A is satisfied if X, Y, and Z are all satisfied. Each of the

more specific constraints are then refined into even more specific constraints in the

same fashion. The refinement process continues until sufficiently precise constraints

are reached. These constraints are referred to as elementary constraints. An elemen-

tary constraint corresponds to a feature which must be present in the design of the

object. An example of an elementary constraint is "The lamp switch must have the

capacity for a 100 watt light bulb". An elementary constraint is satisfied if the design

contains that particular feature. Because of the nature of the constraint refinement,

the top-level constraints are satisfied if all of the elementary constraints are satisfied.

Once the constraints for an object have been specified, the design of the object

is then developed to meet these constraints. The designer specifies the design of the

object as a hierarchical decomposition of parts and their interconnections. In order

to prove that the object designed satisfies its constraints, it is necessary to show how

each elementary constraint is satisfied in the design. These relationships are also

needed to indicate the constraints with which a particular component of the design

is involved. This allows modifications to be made to the design without violating

constraints which were already satisfied.

Many of the major decisions made while designing an object regard determining

how the object should be decomposed to form its design. Some decisions concerning

the structure of the object may be made when the constraints for the object are

specified, however most decomposition decisions will probably be left to be made

when the design of the object is created. The physical decomposition of a similar

previously defined object may be used as a guide to decompose the object currently

being designed. The designer may instead choose to use selected components of the

physical decompositions of other objects in places in the current design. It is also

possible for the designer to incorporate innovative ideas into the current design. Thus

the designer has two sources of knowledge regarding how an object can be decomposed

- previous designs and innovative thinking.

It is therefore important for a designer to be able to access and examine the designs

of existing objects to help in making design decisions. However, this may still leave a

critical gap in the information needed by a designer. This gap is caused by the fact

that while a design describes the physical structure of an object, the rationale behind

the design is often not represented. Capturing the knowledge involved in designing

an object is of great importance in many areas, especially where the lifetime of the

project is expected to exceed the time of involvement of the designers, as in [4]. Thus

it is crucial to be able to retain not only the design of the object but also the reasoning

behind the design so that it can be referenced in the future. This problem can be

solved by including the decisions made while designing an object with the actual

design of the object. By having the rationale behind previous designs as well as the

designs themselves, a designer can make more educated decisions regarding the object

being designed.

When the design of an object is being created, there are usually many ways in

which various constraints can be satisfied. Thus at any given point in the design the

285



designer may have a number of alternatives in choosing which part to use or how

a particular component should be decomposed. When a decision is reached, it is

important for the designer to document the object design with the justification for

that decision. This justification should include the choices considered, the reason why
the decision was made as it was, and reasons why other choices were not selected.

For example, while designing a lamp, a designer needs to decide on the switch to

use given the constraints "The lamp has a two position on-off switch" and "The lamp

switch must have the capacity for a 100 watt light bulb". By examining various types
of light switches available, the designer narrows the choice down to three switches - a

cheap two position sliding bar switch, a slightly more expensive two position sliding

bar switch, and a two position rotating switch. The designer is then informed that for

a two position switch, the sliding bar type is preferred over the rotating type of switch.

The third switch is ruled out because of this fact. The designer then chooses the first

switch citing the fact that it is less expensive than the second switch. However after

tests show that the second switch is considerably more durable than the first switch,

the designer chooses to use the second switch.

The justification of the decision to choose the second switch is stated as follows:

(1) In study X, it was found that the sliding bar type of switch is the preferred type

for two position switches. The rotating switch is ruled out because of this fact. (2)

The cheap sliding bar switch is chosen initially because of its cost. (3) Test Y showed

that the slightly more expensive sliding bar switch considerably outlasted the cheap

sliding bar switch. The former switch was then chosen replacing the latter switch

because of its quality.

In this way the evolution of an object including the rationale behind the design

can be captured in an integrated form which can then be analyzed and/or critiqued by

others. With the justifications, the design can be more easily understood by persons

not involved in designing the object.

It is important to note that objects which are not designed in the manner outlined

here can still have their designs represented. The design would only consist of the

physical design of the object as described in the previous section along with whatever

constraints and design decisions are available. This information could be obtained

from the available design documentation and supplemented by interviewing the de-

signers involved in the project. Without this, all previously designed objects could

not be represented, thereby rendering this entire scheme useless.

4 Design Modification

Some time after the design of an object is completed and judged to satisfy all of its

constraints, there may be a need to make modifications to the design. Modifications

may be necessary because a problem arose with the original design, some constraints

were left out of the original design, an improvement can be made, or an enhancement

286



to the original design is desired.

Through the constraint satisfaction method every effort is made to insure that the

design developed satisfies the constraints imposed on the object. In developing the

design of an object, the designer will likely use parts which have been previously de-

signed and whose functionality matches what is needed in the design being developed.

If it is discovered that the functionality of a part does not meet what was claimed,

a problem may arise in objects which use the part. If such a problem does occur

then the design of objects which use the part must be modified in order to satisfy the

constraints which were violated as a result of the part not performing as expected.

It may be the case that some constraints were left out of the original design. The

constraints may have been either overlooked or not thought to be important. As a

result, the design of the object turned out to not quite match what was desired. Thus

the constraints omitted are added and the object is redesigned to incorporate the new

constraints.

The design of an object can be modified to reflect an improvement is some area(s)

of the design. For example, a new part may become available which can replace a part

in the original design and is cheaper, faster, smaller, or more reliable than the part

originally used. Thus if an inexpensive switch which never wears out is developed, it

can be substituted for the switch currently used in the lamp design. An improvement

to the design can be accomplished by changing the constraints referencing the old part

to reference the new, improved part. The new part must still satisfy those constraints.

The reference to the old part is retained in order to reflect the history of the design.

Modifications can also be made to enhance the functionality of a design. For

example, the simple on-off switch on the lamp may be replaced by a three-way switch

to produce a more versatile lamp. Constraints indicating the enhancement are added

whet(' appropriate and the design of the object is altered to satisfy the new constraints.

It must be insured that previously satisfied constraints remain satisfied after the

design l nodification is made.

The difference between these last two types of modifications is that an improve-

ment makes a design better without changing its basic functionality while an en-

hancement extends the functionality of an object (but does not necessarily make it

better).

As is the case in the process of creating the original design, justifications of design

modifications should be included in the design. This is necessary to maintain the

complete history of an object design.

Modifying a design need not always replace an old design with a new one. Instead,

the old design must be allowed to exist as an object as long as it is still useful. This

is especially the case regarding enhancements to a design. The old and new designs

may re,_ain interconnected if desired so that a change in one effects a change in the

other. On the other hand, the old and new designs can be made totally independent

of one another if significant changes are made to the old design.

287



5 Fault Diagnosis

A common characteristic of every complex object is functionality - each complex

object serves some purpose. For example, the function of a toaster is to toast things

and the purpose of a lamp is to provide light. The design of an object is such that

the functionality desired is achieved. However it may be the case after some period

of time that the object does not function properly, i.e. the toaster does not toast or

the lamp does not provide light. In other words, there is a fault associated with the

object. The fault must be diagnosed in order to correct the problem. A fault can be

diagnosed using either deep level reasoning[8] or shallow level reasoning.

One method of diagnosing a problem is by using deep level reasoning to analyze

the design of the object and determine the cause of the malfunction. Thus by knowing

that the lamp does not provide light, analyzing the design of the lamp will discover

that the fault is caused by a burnt bulb, a broken switch, or a bad cord. Note that

the function of the light bulb must be included in the design of the lamp since it is

the bulb which actually produces the light. This method by itself may have difficulty

dealing with nontrivial malfunctions where the failure of one part leads to failure of

others. In any case, it is desirable to avoid having to analyze the entire structure of

an object every time a malfunction occurs.

Another approach to problem diagnosis is to use case-based reasoning to find

similar malfunctions which have occurred previously. This approach uses shallow

level reasoning since it does not try to reason from the physical design of an object,

only from past experiences with malfunctions. If a similar malfunction has already

occurred with that object, the corrections used to eliminate the previous malfunctions

are examined. If a successful correction is found and the circumstances are similar

enough, the correction is tried on the current problem. If the circumstances are not

quite the same, the correction may have to be adapted to apply to the current problem.

The success or failure of the correction is stored along with the circumstances under

which the correction was applied. In the case of a failure, an explanation of why the

correction failed (if known) is also stored.

If no cases of malfunctions with similar circumstances are found for the object,

similar objects can be examined. If possible, analogical reasoning could then be used

to adapt the corrections applied to one object to apply to the current object. If no

past experience can be used in the current situation, a diagnosis by an expert or one

based on the design of the object (using deep level reasoning) must be formulated.

As time goes by and varied types of malfunctions occur, the case base grows and the

fault diagnosis capability for an object improves.

6 Conclusion

This paper introduces a design scheme which integrates the process of designing com-

plex objects within a framework that allows for the capture of the design knowledge

288



that went into the design. The framework is intended to be sufficiently general so

that any object can be represented. The presence of a broad domain model eliminates

most of the redundancy and wasted effort caused by the inability to integrate rigidly

defined domains.

Case-based reasoning is used to provide designers with knowledge of parts, past

designs, and the rationale behind these designs to assist in the design process. CBR

is also used to help diagnose problems which occur in an object while it is in use.

Future work will be focused mainly on formalizing many of the ideas presented

in this paper. The process of designing objects will be investigated further to pro-

vide more insight into what is required to fully capture the knowledge utilized when

designing an object.

References

[1] Addanki, Sanjaya and Ernest Davis. A representation for complex physical do-

mains. In Proceedings of the Ninth IJCAI, 1985.

[2] Aguero, Ulises. A theory of plausibility for computer architecture designs. Ph.D.

dissertation, Center for Advanced Computer Studies, Univ. of Southwestern

Louisiana, 1987.

[3] Aguero, Ulises and Subrata Dasgupta. A plausibility-driven approach to com-

puter architecture design. Communications of the ACM, 30(11):922-932, Novem-

ber 1987.

[4] Freeman, Michael S. The elements of design knowledge capture. In Proceedings of

the Fourth Conference on Artificial Intelligence for Space Applications, Novem-

ber 1988.

[5] Kolodner, Janet L. Extending problem solving capabilities through case-based in-

ference. In Proceedings of the 4th Annual International Machine Learning Work-

shop, 1987.

[6] Mostow, Jack. Toward better models of the design process. AI Magazine, 6(1):44-

57, 1985.

[7] Schank, Roger C. Dynamic Memory - A Theory of Reminding and Learning in

Computers and People. Cambridge University Press, Cambridge, England, 1982,

Chapter 2.

[8] Sembuganloorthy, V. and B. Chandrasekaran. Functional representation of de-

vices and (ompilation of diagnostic problem-solving systems. In Janet L. Kolod-

ner and Cllristopher K. Riesbeck, editors, Experience, Memory, and Reasoning,

Lawrence Erlbaum Associates, Hillsdale, N J, 1986, Chapter 4.

289



[9] Stanfill, Craig and David Waltz. Toward memory-based reasoning. Communica-

tions of the ACM, 29(12):1213-1228, December 1986.

[10] Steele, Robin L. Cell-based VLSI design advice using default reasoning. In Pro-

ceedings of the Rocky Mountain Conference on AI, 1988.

[11] Steinberg, Louis I. Design as refinement plus constraint propagation: the

VEXED experience. In Proceedings of the Sizth AAAI, 1987.

290


